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LETER TO THE EDITOR 
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Abstract. The problem of tunnelling in ‘topological’ (massless) quantum mechanics with 
an anharmonic potential is considered. A simple method to calculate the imaginary part 
of action for the family of potentials, U(& y )  = (xy)”,  is proposed. The tunnelling action 
is determined by the pole contribution only (on the complex-time plane), in a contrast to 
the ordinary (massive) quantum mechanics, in which tunnelling action is always determined 
by the branch point contribution. 

It is well known that some non-trivial aspects of quantum field theories can be 
adequately modelled by quantum mechanical systems with a finite number of degrees 
of freedom. An interesting problem in the quantum field theory is the vacuum-vacuum 
tunnelling, which is treated usually as the instanton contribution to the classical 
Euclidean action. This problem was thoroughly analysed for the models with quadratic 
kinetic term in Lagrangians (see e.g. [l]). 

In the past few years new topological field theories in odd spacetime dimensions 
have attracted a great deal of interest. These models contain linear time derivative 
kinetic terms, and their dynamical properties differ essentially from those of traditional 
theories. At present, these so-called Chern-Simons models are of particular interest 
not only in quantum field theory but in solid state physics also, because of their 
relevance to the problem of fractional statistics [2,3]. It is thus interesting to consider 
the tunnelling problem for Chem-Simons-type Lagrangians. 

The simplest model which mimics Chem-Simons theory is the ‘topological’ massless 
quantum mechanics which was first introduced in [4]. It is the aim of our letter to 
analyse tunnelling in a model with the Lagrangian: 

L = i ( x j - X y )  - U ( x ,  y ) .  (1) 

One may regard (1) as the Lagrangian of a rotator in the (x, y )  plane in the presence 
of an extemal potential U ( x ,  y ) .  or as a massless charged particle moving on a plane 
under the action of the same potential and magnetic field, directed normal to the plane. 

The quantum mechanical formalism utilizes summing up the Feynman amplitudes, 
exp(iS), where S is the classical action corresponding to an arbitrary path lying on a 
fixed-energy surface and connecting given initial and final points. In the traditional 
models with the quadratic kinetic energy, the trajectories passing through classically 
forbidden regions, where the potential energy U exceeds the total energy E, give rise 
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to the imaginary part of the corresponding action. This is the commonly known 
description of the under-barrier transition. 

In model (l), the total energy coincides with the potential U, so that this standard 
philosophy is irrelevant. However, we will demonstrate that the forbidden trajectories 
and an exponentially small probability for the under-barrier transition exist as well in 
models of type (1). 

In contrast to [4] where the harmonic rotationally symmetric potential, U ( x ,  y )  - 
x2+2y2,  was considered, we choose the form of potential energy which allows tunnel- 
ling. For simplicity, in subsequent analysis we select the particular potentials: 

U = (xy)"  (2) 

with an integer n. On the phase plane (x, y ) ,  the surfaces of equal energy are the 
hyperbolas, xy =constant, see figure 1. A sub-barrier trajectory connects two points 
belonging to the different branches of the hyperbola corresponding to the same energy 
(figure 1). 

101 I b l  

Flgure 1. The equal-energy hyperbolas on the phase plane of the model (1) and (2): 
( a )  n is add; ( b )  n is even. The arrows indicate passible paths of the tunnelling across 
the classically forbidden regions. 

Following the general prescription of quantum mechanics, we describe the under- 
barrier paths by formal solution of the classical motion equations corresponding to 
the Lagrangian (1): 

. Ju x =  -- 
JY 

. JU y = -  
Jx 

with complex time 1. For the quadratic Lagrangians, the under-barrier motion is 
accomplished in purely imaginary time, the coordinate taking purely real values. In 
the present case, the sub-barrier path goes along some contour on the complex plane 
of 1, which maps into a contour on the complex plane of the coordinate with real 
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initial and final points. The action, S, along the pass is given by the integral: 

S =  L d t  I 

In (4), ( x i ,  yi) and ( x f . y r )  stand for the coordinates of the initial and final points of 
the complex classical under-barrier path (figure l ) ,  the last term being produced when 
integrating by parts the term fxj in the Lagrangian (1). Equation (36) has been used 
to transform the integrand. To perform the integration, one should insert into (4) y as 
a function y ( x )  determined by the energy conservation 

U ( X , y ) =  uj= U ( x , , y , ) .  ( 5 )  

Let us now proceed to the particular potentials (2), designating the constant value 
of energy U, = U". In this case, ( 5 )  yields 

Y ( X )  = U / x  (6) 
and substitution of (6) and (2) into (4) brings us to the integral the eventual form of 
which is: 

The path of integration going along the real axis gives rise to a divergence in the 
integral (7), provided the signs of xi and x, are opposite. This reflects the impossibility 
of finding a usual (real-valued) trajectory connecting the two branches of the equal- 
energy hyperbola lying at x > 0 and at x < 0 (figure 1).  Following the general prescrip- 
tion, we use a contour bypassing the pole of the integrand at x = 0, which is equivalent 
to rewriting the integral as follows: 

s= -- 
n x- i s  

E being a real infinitesimal shift. As the probability of the under-barrier transition is 
determined by the imaginary part of S, we find 

n - 1  
Im S =  --nu sgn(e). n 

Evidently, one should choose sgn(s) = sgn( n ) ,  so that the tunnelling action eventually 
takes the form 

n - 1  Im s= - vu. 

Recall that the parameter U gives the energy, U, = U", of the initial state, and hence 
the tunnelling probability depends on the initial point (xi, y i ) :  according to (6), U = x,yi. 

The analysis developed can be readily extended for potentials U ( x ,  y )  of a more 
general form, the action integral being determined by the residue of the integrand (4). 
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In particular, it is straightforward to do this for the potential which is a polynomial 
in powers of xy. Note, however, that Im S given by (9) vanishes at n = 1, when 
U(x, y )  = xy. The same holds for all the potentials linear in y, i.e. for 

U k Y )  = f ( x ) v + g ( x ) .  (10) 

Note, that the potentials (10) are degenerate in the sense that they give rise to the 
equation of motion ( 3 0 ) ,  

x = - f ( x )  (11) 

which does not contain y.  

One of the authors (BAM) is indebted to the Institute for Low Temperature Physics 
and Engineering (Kharkov) for hospitality. 
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